欢迎光临,有需要帮助可以联系站长,微信:yuyuetiku
想要快速找到正确答案?
立即关注 四川开放大学微信公众号,轻松解决学习难题!
作业辅导
扫码关注
论文指导
轻松解决学习难题!
钢筋算量 - 在线作业:形考作业三(占形考成绩的15%)
课程名称:钢筋算量 发布教师:苏海花 作业来源:单元五 剪力墙的钢筋算量 作业满分:100.0分 发布时间:2025-06-28 作业要求:请同学们完成单元四、单元五的学习后完成本次作业;请在规定时间内完成作业。题型说明:判断题,正确选A,错误选B;单项选择题,每题只有一个标准答案;多选题,每题有2~4个正确答案;简答题。
单选题
1. 当顶层梁高-保护层 A. 梁高-保护层 B. 梁高-保护层+12d C. laE D. 1.5labE 2. 当顶层梁高-保护层≥laE时,中柱柱顶纵筋顶层锚固长度为( )。 (分值:2.0分) A. laE B. 1.5labE C. 梁高-保护层 D. 梁高-保护层+12d 3. 上层柱和下层柱纵向钢筋根数相同,当上层柱配置的钢筋直径比下层柱钢筋直径大时,柱的纵筋搭接区域应在( )。 (分值:2.0分) A. 上层柱 B. 下层柱 C. 柱与梁板交界处 D. 无限制 4. 在基础内的第一根柱箍筋到基础顶面的距离是( )。 (分值:2.0分) A. 100mm B. 50mm C. 3d D. 5d 5. 上柱钢筋比下柱钢筋多时,上柱比下柱多出的钢筋如何构造( )。 (分值:2.0分) A. 单独设置插筋,从楼面向下插1.2La,和上柱多出钢筋搭接 B. 从楼面直接向下插1.5LaE C. 从楼面直接向下插1.2*LaE D. 从楼面直接向下插1.6LaE 6. 首层Hn的取值下面说法正确的是( )。 (分值:2.0分) A. Hn为首层净高 B. Hn为嵌固部位至首层节点底 C. Hn为首层高度 D. 无地下室时,Hn为基础顶面至首层节点底 7. 抗震中柱顶层节点构造,当不能直锚时需要伸到节点顶后弯折,其弯折长度为( )。 (分值:2.0分) A. 10d B. 12d C. 15d D. 5d 8. 平法表示中,若某柱箍筋为Φ8@100/200(4×4),则括号中4×4表示( )。 (分值:2.0分) A. 箍筋为四肢箍 B. 四根箍筋间距200 C. 四根箍筋加密 D. 四根Φ8的箍筋 9. 某框架3层柱截面尺寸300×600mm,柱净高3.6m,该柱在楼面处的箍筋加密区高度应为( )。 (分值:2.0分) A. 300.0 B. 因不知梁的高度,无法确定柱净高,无法确定加密区范围 C. 600.0 D. 500.0 10. 柱箍筋在基础顶面以上,第一道箍筋距基础顶面距离为( )。 (分值:2.0分) A. 50mm B. 3d C. 100mm D. 5d 11. 构件代号“YBZ”代表的意思是( )。 (分值:2.0分) A. 非边缘暗柱 B. 构造边缘暗柱 C. 边缘暗柱 D. 约束边缘构件 12. 剪力墙结构不包括以下哪一个构件( )。 (分值:2.0分) A. 墙柱 B. 钢结构 C. 墙身 D. 墙梁 13. 剪力墙中水平分布筋在距离基础梁或板顶面以上( )距离时,开始布置第一道。 (分值:2.0分) A. 100mm B. 水平分布筋间距/2 C. 500mm D. 50mm 14. 关于地下室外墙下列说法错误的是( )。 (分值:2.0分) A. IS表示外墙内侧贯通筋 B. h表示地下室外墙的厚度 C. OS表示外墙外侧贯通筋 D. 地下室外墙的代号是DWQ 15. 墙上起柱时,柱纵筋从墙顶向下插入墙内长度为( )。 (分值:2.0分) A. 0.5LaE B. 1.2LaE C. 1.5LaE D. 1.6LaE 16. 剪力墙竖向钢筋顶部构造中,伸至边框梁的锚固长度为( )。 (分值:2.0分) A. 600mm B. ≥laE C. ≥labE D. 500mm 17. 墙端为L形暗柱时,若外侧钢筋连续通过,则外侧钢筋的长度按哪个公式计算( )。 (分值:2.0分) A. 墙净长+支座宽度-保护层+15D B. 墙净长+锚固长度(弯锚或直锚) C. 墙长-保护层 D. 墙长-保护层+0.65LaE 18. 剪力墙洞口处的补强钢筋每边伸过洞口( )。 (分值:2.0分) A. LaE(La) B. 洞口宽/2 C. 15d D. 500mm 19. 剪力墙端部为T形暗柱时,钢筋伸至墙边弯折长度为( )。 (分值:2.0分) A. 10d B. 15d C. 12d D. 25d 20. 下面关于剪力墙竖向钢筋构造描述正确的是( )。 (分值:2.0分) A. 剪力墙竖向钢筋顶部构造为到顶层板底伸入一个锚固值LaE B. 剪力墙竖向钢筋采用机械连接时,没有非连接区域,可以在楼面处连接 C. 剪力墙竖向钢筋采用搭接时,必须在楼面以上≥500mm时搭接 D. 三、四级抗震剪力墙竖向钢筋可在同一部位搭接 21. 剪力墙端部为端柱时,水平钢筋伸至对边弯折( )。 (分值:2.0分) A. 8d B. 15d C. 6d D. 10d 22. 剪力墙竖向分布钢筋采用搭接时,搭接长度为( )。 (分值:2.0分) A. ≥1.2laE B. ≥1.4laE C. ≥laE D. ≥500 23. 剪力墙相邻竖向分布钢筋,采用焊接连接时,相邻钢筋错开长度为( )。 (分值:2.0分) A. 0.3llE B. 35d C. 500.0 D. max{35d,500} 24. 在连梁配筋表中部分连梁在梁顶标高高差出标注为-0.600,说明( )。 (分值:2.0分) A. 连梁梁顶超出本层楼面600mm B. 连梁梁顶超出本层楼面700mm C. 连梁梁顶低于本层楼面600mm D. 连梁梁顶低于本层楼面700mm 25. 剪力墙竖向钢筋顶部构造中,如果采用弯锚,伸入屋面板或者楼板的弯折长度为( )。 (分值:2.0分) A. 30d B. 12d C. 15d D. 16d 26. 剪力墙柱钢筋的构造同剪力墙身的构造相同。 (分值:3.0分) A. 对 B. 错 27. 剪力墙端部无暗柱时,水平筋可伸至端部截断,再配置U型钢筋配置,也可伸至端部弯折15d,且两端弯折搭接50mm。 (分值:3.0分) A. 对 B. 错 28. GBZ表示构造边缘构件。 (分值:3.0分) A. 错 B. 对 29. tb Φ6@400@400矩形,表示地下室外墙拉结筋为矩形布置直径6mm的一级钢,水平间距为400,竖向间距为400。 (分值:3.0分) A. 错 B. 对 30. 连梁在边支座直锚构造是伸入支座的长度≥laE。 (分值:3.0分) A. 错 B. 对 31. 当圆柱采用螺旋箍筋时,需在箍筋前加“L”。 (分值:3.0分) A. 对 B. 错 32. LZ表示梁上柱 (分值:3.0分) A. 对 B. 错 33. 如果柱下层钢筋在变截面处弯折,上层采用插筋构造,插筋伸入下层1.5LaE,从梁顶处开始计算。 (分值:3.0分) A. 对 B. 错 34. 柱净高与柱截面长边尺寸或圆柱直径形成Hn/hc≤4的短柱,其箍筋沿柱全高加密。 (分值:3.0分) A. 对 B. 错 35. 抗震框架柱纵筋的断点位置,底层在距基础顶面≥Hn/3处,其他层断点位置距楼面的高度为≥max(Hn/3,500mm, 柱长边尺寸)。 (分值:3.0分) A. 错 B. 对 多选题 1. 顶层框架柱因所处位置不同,分为( )。 (分值:2.0分) A. 端柱 B. 边柱 C. 角柱 D. 中柱 2. 下列关于柱平法施工图制图规则论述中正确的是( )。 (分值:2.0分) A. 柱平法施工图中应按规定注明各结构层的楼面标高、结构层高及相应的结构层号 B. 柱编号由类型代号和序号组成 C. 注写各段柱的起止标高,自柱根部往上以变截面位置为界分段注写,截面未变但配筋改变处无须分界 D. 柱平法施工图系在柱平面布置图上采用列表注写方式或截面注写方式 3. 确定柱纵筋在基础内的锚固形式,主要需考虑哪些因素( )。 (分值:2.0分) A. 基础的保护层厚度 B. 楼层高度 C. 柱箍筋的间距 D. 基础高度 4. 剪力墙墙身钢筋有几种( )。 (分值:2.0分) A. 洞口加强筋 B. 水平筋 C. 拉筋 D. 竖向筋 5. 剪力墙水平分布筋在基础部位怎样设置( )。 (分值:2.0分) A. 水平分布筋在基础内间距应小于等于500mm B. 在基础部位应布置不小于两道水平分布筋和拉筋 C. 水平分布筋在基础内间距应小于等于250mm D. 基础部位内不应布置水平分布筋 简答题/计算题 1. (分值:10.0分)
渝粤题库 Vrkez17k6mCh5SigqKTof874o3uGxrS3BHtdFjvG6MNWHRVSov1Vf+Yc1wwiYsMsESiG2WA8lwnJA6VAkceVG9oxGIZzGvR5GjGA7JDOhFVrE6veB3Ug6CT5ZoILGvNlpGKn+i33gd04bH1oUbGjwyxwCjEZQ4iMX/AKlc1q+mYHUy9NGRdPGrTxq08atPGrTxq08atPGrTxq08ahgj5+njVp41aeNWnjVp41aeNWnjVp41aeNTYgHrFYrZOkStIlaRK0iVNhM0oYb0E2MjXekh7uQN75zLbEy+2Qq7ZCrtkKpVvhsh24Diz+2Qq7ZCrtkKm2+3qTtkKpQLbEZcYpgkssKMe39shV2yFXbIVOt8BjZkfVR/wDD/Jx+S8JuyT6+lh7u0/l4TdhA4/FisU1OEzMHFLMLaNtiQbCjkskmI0A413j8l4Tdkn19LD3dp/Hwm7CBx+Id1jaNt4k5yPyXhN2SfX0sPd2n8fCbsIHH4h3WNo23iTnI/JYSEeoPi29RertafX0sPd2n8fCbsIHH4h3WNo23iTnI/JYS83TDzpZyFzrWn19LD3dp/Hwm7GBx+LHNUuNo23iTnI/JYSzOBGZqRIhXGsyfX0sPdyDlHLhgYR3aR12kddpHUq2DZEiWwZIfaR12kddpHTLaJxe0jrtI67SOrdbmGB2kddpHXaR12kdXGGkOFYyPJdI/JYKiKiJ8JKa1kBPr/eLMRjwSUMvjD3ce3pJY1qXEX8JhN2EDj8Q7rG0bbwc1HtQAo96j8l4Tdkn1/vGeo5AUe2R4w93afx8JuwgcfiHdY2jbeJOcj8l4Tdkn1/vN08YjRf7zxh7u0/j4TdhA4/EO6xtG28Sc5H5LwnOakNP4/ularxJEkAdEhGEfRtpsZGOcFHFIBCO0baixkWTbI6PFkogUCiC0ba0balxWth28CJEyUziR0I7Rtpkb5Jo21kpk5KZNsjI+Po21o20OOg3IFEK+Mj3vjJ3gDPmdo21o21o21o21OgjdDDCcgmxUa7+6OGj5HQVLj4w93afx8JuwgcfiMiuPjaNt4k5yPyXhN2SfX0sPd2n8fCbsIHH4h3WNo23iTnI/JeE3ZJ9fSw93CucaIv8AKYzdhA4/EO6xtG28DGHHCCaGdeY/JYPe0bO4t+ZT2kt6fX0sPdrbZMuQ09wYzU3GtTca1NxqVInrEiSJ6Q9Tca1NxrU3GmFuLS6m41qbjWpuNW481oNTca1NxrU3GtTcampPmxbTDNDu0fksJHTkkLLC+QzotyfX0sPd2n8fCbsIHH4szM3G0bbxJzkfksJAUkAix+h7kVLUn19LD3dp/Hwm7CBx+InKsnG0bbxJzkfksJonGisijEiDcKzJ9fSw93afx8JuwgcfiHdY2jbeJOcj8l4Tdkn19LD3dp/Hwm7CBx+Id1jaNt4k5yPyXhN2SfX0sPdhvGhK1yPZjN2NtvSK7EY1abC5XdIBbI7rg+E2U2HFgXBbhd4/JeE3ZJ9fSxFTVlsGYdAXBEybjWTcaybjT408gw2J4C5NxrJuNZNxpI9wR2TcaybjUm0HmPjwJcQWTcaybjWTcaybjRoUyQK32jQyo/I+FxKwcNP49KSBFKTtkKu2Qq7ZCrtkKu2Qq7ZCrtkKu2Qq7ZCrtkKhW+IsjtkKu2Qq7ZCrtkKu2Qq7ZCrtkKu2Qq7ZCrtkKhxI4WaGLWhi1oYtaGLTrfEc0VtjjG2JHY71/SiL/wCu/8QAFBEBAAAAAAAAAAAAAAAAAAAAkP/aAAgBAwEBPwEc/wD/xAAUEQEAAAAAAAAAAAAAAAAAAACQ/9oACAECAQE/ARz/AP/EAEYQAAIBAgMCCgUKBAUEAwAAAAECAwARBBIhEzEgIjRBUWFxc5OxEDIzUJEUIzVScnSBgqHwQmLB0QUkQOHxFUNjkjBgcP/aAAgBAQAGPwKmdzZVFzSgnVjYedM7myqLmsss0aHoZrVmikVx0qb1dTcXI+GnoLi5AvuHRQZSCDuIopfjAAn9/hRyMDbf8bf0Ncqg8QUFXEwkncA4rLcXHNRyncbGsss0aHoZrVyqDxBQfMMptYjr3egbWVEvuzNauVQeIKMomj2Y3tm0rlUHiCs0UiuOlTelhLjaMLhadUcM0ZswHNRVsTCCN4LijspUe2/K1/TllmjQ9DNagiYiJmPMHB9AZTceg5TuNj6Al+MQSP3+PoM2YbMLmzDorQg1nButr8XW9BlIIO4imBYDIuZr8w/YoKuJhJO4BxV2NhcD46ei7GwuB8dKVSdW3VmlkVB0sbVyqDxBQdGDKecG9GbMNmFzZh0ejQg+gq2JhBG8FxQRMREzHmDg1llmjQ9DNauVQeIPRdTcXI+GnBmbYq8uzOU5bmoV2MLBX44GDKW4p33/AAplhugysBGgAB0uebovU80Us5ZIRfRN4L7+y3NREiNMT/BNl/ppSQpFDmyXNxba8ZCez/esQzZcOpbP8zrlFh1dXRTfKGxOcO10UnS7H6nYaEmfEZ9kMzNnPNzX0NCwIfMVy2gBFjp+N/3pQG1d7GUnRdOP2c/9Ky5lEazhbbIsfVzcx6aUSFCrCTchU8VgOc0yy5mIUlWQm4XTTTrH6VJri9JBkvtegb/96jaLMGZrs2zZxYC1tO2gry2Vjl5LIu/rvpWHiSVo0LeqoFuLqObptUCySyEZZTcNlzcYWOnVWHZiSTGtyeysUwUsNsL232yLSyZhk2kZzX0tmFNMMSQrZQZI1uijXS9tefX423HFOjBlMu8G/wDAtQ4dDhpAyozIotrmT1t/T0VJHsIkEXFAEnPYHo3a1fYwHjBDaY6E2/l66s0cIA9bLLcj9PS/+ZghvEntRv1brFf4cnymB7fwKOMOId+tCUGbRuMqyMLj8Pj+FIsDy7McZys7W15t/Xf/AJpRNLAHVbIMRxrddWdv8NMY3kRhderWgiWkiO60e0F+wddKBHBorXHyBv5eb9/rRWCJc43jZGFT+lSbNjGzbS8Ysy6E5juv/wAipbsWm51ew17QN3XWY4JTx22jXU5QGN9Wtv1+NX+SJG1s44gBjG4D8dTWNDTSsuxKqTl41g/V1N8KaIyYjIoBudn1/ppS3gjbLrdx63QtSZIMOQysi59Nmcz9XX+lRBHkuzrxFy/WGuo6SKw5EmLYO12I2nGGUnm/DdSqNvZhocjOR5/rUvriUwoLiF9DdtbWpjBdX5s6Fdfx5qn2T4hFyvxRFdW363tuPbThXnka1xto8g+OWp9rCAflEe0AOfN6nV0Umwh2fzT3+aKX1XqrYpKLrOzFI9XPzh+HNv8A0rCI+I2k21JKnQrxG5rCtiJQueNrrnQdnrc2/dQlXEtZtn7R4t19b/gajCIGZ2y6tbmJ/pWaVNGl1yYpxbM3R+NAa6dJ4AvFBa3tGXM3YP3+FSZYYls3zeZMwy5RUkawxpJs2VVTdrTPkDo0YQjbMnT0b99ZHhiY5r/OSGQDr1H6Ut4ksVbMwUDjXW2n4GmUw4cbtY1tm/CrJGhO0c8Z7b2JHMajilSOyIFzK97/AKU04kswZyqane1/rAUrDJlka8tubQ6dl/1v005CLk220B2pUniZeYUm0VcirJqJM3rMDz1LLBHF84FuL5deNc7usVK2ygO0bN7U6aAfV6qLFpb9UrD+tCNM2QsrFmlLbjfnrZ2tHvZv6D+/7EJR4l2asmq30uLaadFRRNa6IFNqxBI0aS4/9QKCQoLqyELuGjChPs8P0ayHzy+d6xOixySPxSDcDigXqKFVtDHY9ttw8jWJOgzvdSdf4QKSNBe8is7k66EH+nlSyKbEaN/MOippC5KvbKt93ollYWzWUDqH/J/SsHGQLQgXa/8AKR/WiiLkXnkJ8h/f9a+YGZedC36jroGxHUameRQpd72vfmA/pVkcJ0m16MTgoquxRr3b1jY/D99JTLGbeqQSM3b+zUsQSJxKDmfNkOt+o9JomSKJdN6vc+VWW73YvdzxFub7ucj981iNXRuMWO/N+/KsSiAKr4cRp0fxf3FB9kBuuflch/prR2kMGU72y3dvx5v3uosIIM+ZuK6AgjMbdlIEjUNmjuF6AwP96jKxw2jfMLynXQj6vXQzgBugG9SPbimNQPi396KOoZTzEXqKIxRPHFGtryWu3w/fk4nVbb1Ktf8ADdUuV2+e3m9smgGnXp++cFblG9YE+r108Wyhy7Rm477+MTqMprCiSOO0bcZlkJ/hI5xWzVZONvKFf1vzUHmWOQnQlTbJ1AUiPGpiXjHMAb9VA7OAaHjLGLg34p3b6Cy2SQqMw5r9HZQS97fv4f8A45nRyhzKL/jQlSQiAbv5+umkMjlmNo415zTl5rzhC2a1Rk7yopmVSzAaAc9YiZppHeMaxyLbKag2jlxIhLdRAvWEndr7drMvRfdWzynacy9PXSjNLFHzyot6TDLIbCLOzjeaghvZyzh2H8tTRubmJ8t+ke8CI5FYjfY00A3i/PvtWy2qbT6t9aCs4BPNUiW9Sska3OYHf11mwyXgfV47+qeqjPLDcLpEoYaddTqY7MwKqt6RWFiFAomNM7dF7VM0gyGSPJaoTMLCNCN+8kWrDQv6sDXzfWtuotc573zdFNGIQUI9bNUUkYzZYtkRUEg40iMxYdOapXb1pXzHq93lTuNGSFcuziZbjnPRUSx+tm4o6NRf+tRRooDBw+bor/FC++5HwGlSM3rEJf8A9azObCpONre4W3NULWGWbdbeKYR2su9mqxKsOla+T5NMmfNepmVbpB69OsKhsiZz/aopI9dpa1RrLCBHKbKQ2oPXUkoX5mN8jHnqbIuZYfX/ANqDLuIuPeBW5F+cUDt5mtuDNpW225LH1uKNaLfKJ9TcjNT7wH9cD+KpSG1a1x0aVFMBdY76ddtKaUjXIEReoVDNH68nt47bv7VhUZWKcYtYb2p2ZSrPNmfTd0Cl7kj9ax8NuPKxKdd6nz/xRrl67C1qiR/+zHr2mlNybGyLlPxrEYS3zjSHL1gnfWOS1zJqn82lqijO9VA96ylTxiRm+FWYXF70zncouaLx7r2otG9r77airs+dh+nv3E9q+VAZ1Vn0GY1KmfMm2fNr22qaP+EjjgfpWKmw65UWHUDcWr/DmX1nNmP1rj37ie1fKuOit2ipoo8nzrEm69NSRrKi5tzKu6rST7RLWy5LVFdsyw+oP/jAJAJ3e58VmmmGRwAFe3NVjjpfHrl8vj1y+Xx65fL49cvl8euXS+PXLpfHrl8vj1y+Xx65fL49T/52QC4122/SuXy+PXL5fHrl0vj1y6Xx65fL49cvl8euXy+PXL5fHrl0vj1ZcZMT1TVi4NrIyjLbM2o0r20/iV7afxK9tP4le2n8SnYySkoMy3fcaG1xMrP0h7UG2sxt0v7lxveDyqXIha8htp10ufCxZra6VyaP4VyaP4VyaP4VMy4eMEIbaVEuyzLfjXGlq5NH8K5NH8K5NH8KcDDpcb9K5NH8Ku2GQufVQDVqWSSFY1caBBoOqs8sKM2Y6kVyaP4VyaP4VyaP4UWbDxBRvJFPLgsIqQJ/Fl4z9lfkNY38nlwZvsmh7mxveDyrEfeH4OI7s1h+7HAlCjjAjN8PRtcgMiiwNCfGiyj1IOYdtSd83AKSKGU7wa+TRfMwW40g8hWHjiXKohasb+Ty4M32TQ9zY3vB5ViPvD8HEd2aw/djgYntXy4EvfPwoO5asb+Ty4M32TQ9zY3vB5ViPvD8HEd2aw/djgYntXy4EvfPwoO5asb+Ty9LZL3/AJd9W+TYjafZe9SZr3yH1t9D3Nje8HlWI+8PwcR3ZrD92OBie1fLgS98/Cg7lqxv5PL0tsPac1SOZJIokOVVAtfrNSt1ML9ND3Nje8HlWI+8PwcR3Z8qw/djgSqFsVIuengS98/Cg7lqxv5PL0s6AFtwvXz7LIv1lFiKkdjc2bX8aHubG94PKpwkrqNodAaEOJlxUWIte210bsrlGK8WuUYrxa5RivFqZtviTZCdZKhfb4kXQGwkrlGK8WuUYrxa5RivFqVNviuIRrtd9coxXi1yjFeLXKMV4tOTNOLSMOK9q5RivFrlGK8WuUYrxa5RivFp5o5sSWHTJQzuzcQ7zWN/J5emxFxVhUwUADKd1D/XlUhllI35F3VlMckb/VcW4WN7weVSzx2XEJiGyk7j20Y8VA0csZ/XpB4GI7s1h+7HA 广东开放大学 xPavlwJe+fglWFweY1CsUaoNk26sb+Ty4M32TQ/1+zhxsSMddnIL0BiJ88uW6qFsOFj 渝粤教育 e8HlWI+8PwcR3ZrD92OBie1fLgS98/Cg7lqxv5PLgzfZND/XzrM0fzjZtd/41DKsimLIQuvCxveDyrEfeH4OI7s1h+7HAxPaPLgS98/Cg7lqxv5PLgygkAlTah/rmUGxNMCGa5vmS5zfrUbtYC7HID6ule2n8Q0G2kpt0vQkzv2BtKvnkH2WtXtp/ENYsbSXSQfx9VT/ADkotOw0etnnftza0Y87685bWvbT+Ia9tP4hqY7WbRDvesPJnk9QaZtK2meTszaVm2ko+y9q9tP4hqRS84C7jtDrXtp/ENbPO/bm1rZ537c2tSHaSj51tz17afxDXtp/ENZtpKftPetpnfszaUW2ko7HtUKbSX2R1z61jUudyC99d1e2n8Q17afxDXtp/ENe2n8Q1IWeVsouLvz0NriJWbpDkUG2kxt0v/rppJs+0zcRs25eqoiwuBGwz/DhY3vB5ViPvD8HEd2aw/djgTIdyEW+HAl75+FB3LVjfyeXBm+yaHubG94PKsR94fg4juzWH7scDE9q+XAl75+FB3LVjfyeXBm+yaHubG94PKpoZSQxnY7uDiO7NYfuxwMT2r5cCXvn4LSytZVqJob2WJgbisb+Ty9JdjZRXJ8Tl+tsjUrKbgpQ9zY3vB5VPJEmZNqw30FGAWwFva1yBfFrkC+LXIF8Wpg2CVVyG52u6oQmCVlyCx2u+uQL4tcgXxa5Avi1K3yEccj/ALvVXIF8WuQL4tcgXxafZ4QONo2u0trXIF8WuQL4tcgXxa5Avi00LYILfn2tKsy2JjJGtY38nl6TmfJ/N0GgkmLwq33XXX4VKM2bik36aHubG94PKsR94fg4juzWH7scCTN6mmTgS98/Cg7lqxv5PL0tExsDz1NNIyyPI3rDo6KlzFdzWy7rUPc2N7weVYj7w/BxHdmsP3Y4GIBOgIt8OBL3z8KDuWrG/k8vS8abz+ooNh12R6OY9tSq65Ws2n40Pc2N7weVYj7w/BxHdmsP3Y4GJ7V8uBL3z8KDuWrG/k8uDN9k0Pc2N7weVYj7w/BxHdmsP3Y4GJ7V8uBL3z8KDuWrG/k8uDN9k0Pc2N7weVTQ7LMu2Yk3oMNxF+BP3ZqDCNFYWCBr8CZzuci3w9KxLHna1zrTP9aRjwWmYXtzUjGPIVjI31jfyeXBm+yaHubG94PKnk+UrxmvbLVhj4vCFfSEfhV9IR+FX0hH4VMjY+PKwsfm6WVMWmZd10r6Qj8KvpCPwq+kI/Cpj/1CPX/x19IR+FX0hH4VB5sZGWGlwlq2UOOjC7/Z19IR+FX0hH4VfSEfhV9IR+FRilxsbIf/AB1tjOraWtasb+Ty4Lh2tnFhQ9zF3hUsd5rk61yda5OtcnWuTrXJ1rk61yda5OtcnWsQpgWykW+FcnWuTrXJ1rk61yda5OtcnWuTrXJ1rk60yxxBQ/rddexWvYrXsVr2K1YwLaspXP1tQZYlBHvAkAXO/wD+3//EACwQAQABAwMCBgMBAQEAAwAAAAERACExQVHwIGEQcYGRofFQsdHBQDBgcOH/2gAIAQEAAT8hqZIzxgM1A+wvLD+g1MkZ4wGaKJ5INR608B2EYn0pDGMHVK+R8E9TLIspG2W40eBpRIlAHZlGBmP2qLINBqQsPP2K5T/tPgaESvvU6EELK4OP0+1ZiLFEI8v5I0UTyQaj1rlP+0n0c3QyDDdTw8pXUveuU/7SaawJg931K5T/ALTwHYRifSiC2T7oc+HZqQfDMufp2p8DQCR968pXUPbxKJ5INR61iRM4fSfCYM9o8xNHt4ZiLFEI8v5I+Ch2ZRkIn9PBoXBuFkzbNqOkiUkZuMPzUmiaix2jPpR4GlEiUm4DEEm8+r2p8DQiV96AzjB1QPlPADOMHVA+UqIJNjmNJ37dnZo4jsAxPrXKf9rGj6MfWmhcG4WTNs28DpIlJGbjD8+D4GgEj71iRM4fSaKJ5INR61yn/fBDGMHVK+R6UscbGWGI1zRIZPMtJGtncpHlSSlSSogK0T5xQs0UuXG8iFD/AFmkHz720xs11f1WeECBCYgchIwQjUE2biBE573qoMK4k1G0m+TUtAksv3ZBkpmltB+aj8fgtOh/ImbLmkFSSC6XiZKXJfttiXTLJGtxwsGm00kiwjGRkzOItUc8Mj1ytZUiMnnk3VjBwCfK2V//ABSlzB0khl+ZBYsuc2q0W/RBmXzQHOEaAMU5Qt2G1miouB8QeLN3zT8GkSrCg8iDgyA18vaWz8odhzO1MAvliyuPVlAlwFBo+RGPcpco9mCcKZTk7KdzBklgMYgP5TNQDHKQT6D5U3cUJmROI7muvj67AOxq00P953GMFSl0Da5hgWmwls1q5DTyoSdxymxQkkKABN4KKsRK6ectov3mdBJz3fTeABzxOWSyjjsg0tS5iEVllXlKw50nspCikyIfNaHerTfX5DlsNzS4WokWa6aQMOVGhxoiUStpLAlkXdkSdCbNXRS7dQZh2sNScArg5AwEhg817hTG2NsW+cEyhEXzMUyReRMJuQoTd9oZYuTKiWlA8RLPZo1fMi6I8wQYkzsNXYpFFCRhmUYbENPAER+apEN6WSf7RfApwTJOYjel6E7YXuCdjHeL1OpXlKVN3kmSEOlNgLCh7H+0ahgWF2iE4ERpX6r5pyJpHsQs4Q0Ql02NhRdGwgaGwXEYuhMzqFQpowSrBOVKNaYUdrYBk0IvM07HfEUyJhp3J52pgC3lmjBsEEi+7noKQLCMOwkG8q+akFAZE0Fk8x1GfNlnuPJDYMGWNqLSsOKzkLDuq+1WrWd0vo8yl521FmA2GC+szLIQ1VnwyTohxd3tTBuXPEwjQaLJMKSAMJj3rWinsQO8gtYvegfmS07AnMg6MlqC2TyLc2TJfvpUWuAcpFGA73vMVIOgJfCkhS0WXRh204ZoIxbf7EKIRaNrGhOYMd5wCIeBMuw22G07LRe9BsSWUKwTBgzpOClsTJhIRUKYV/J/uGlNZJWkehBSQNBIkBGABiWU8iKn7KkDNkvENkMetT7x5nYtbJJ2C8sHKWDIa6J3HajayiZlHeSFsWRGNk3BosLyWZ892rj+rMiXTadu0zeCr5y5t+F7r6GhmlGXCzRpHoT1xadlON/tLphHsrMl9+nVHVqNlvIzLMNSWCTtarWAXYjP80+SYxRxRNyaO2z3Z8mi5SLKoLLq1mZZtRFwuSF1gyl9ZldoUzKK7SbEobT6s0nYT2jBc2u1g/hyMotuhnQd7UDFBYeFhfeT2sxAbLdsExgwFCTZNzYHZ3GzvTiCLDMdnl1YxKgyr+Qc86EvtkYIUh9kQQgbWCypKqQBPpGrWmhr+G94P1Snu2nKSfpWVH0Y+lEIFkgi6k5iLe92kV+WjDMqzHlhNRam5xWYDM7ng6fFJe1jaFh7AnebXkoyDXAoNEuNme5RwsxN7aTLuv7og7KwDyv3awOPRKJ4mitKMk3WRdrBU+GWdcIAcZmfIvLDeYAEksexnSQgqXYUiRYqJvKyTcm9b5zSAlmA0GA0I/8ApyE8MEYQNHpiIpf/AIovMGA2DFIsSIrMTBShygvpTr0OUqW3uefkFN1Rp5I7ZpyoHSQLDyp0r3yuztSDj5JI7M4KwOcjLB/aUOu2Rs87VIsfyST9/kMEvRsVFHruwx7/ABQ0fkP4VhwUmjIhYLvJNCDZ8CwGguTUTufzSri2gOq7tHEj44SCWp5DBM4KMoGM71pxqMUpll9ahxa4leHpE0dpGctBIe9LyVBO/YdqguDGIvmTNR4txQoXGrCgOfMjytS2bCNGA9j8eCMhCUZUoFifHo/2ih2QvH0VijzzoLkZb98V2kJOhSbyT80Kj5xS0S1IaIJifppb7ZC5hFv7UxwvGNOxUAuMTYe5VsgJjUuERTpboU3dWPIqFsyrmbg7xRaSd3bL8TWXvMsghUKLeHdCnYWl8wipu2mPRTzSZO35COoqNU8qE42tPNEU6vThXfVQ7Lhh7YxTopIKtDehzKeRwKaXOo3wfu1G/lxv3O60icOmFvTsferghuaFsPrL6UlROBWDHcbFFzjG1OhoH24t5NEIUngynDv/AGrMMZ2Xn2P3SSdvKbStUiycO5eiP1Svqy41GB6lM6lb6H5WeTEdnD4onABDuXKY6XQdqfqSpVc3rQR8qR2g6ej87z22k+ilADdpeBuy+bXOyxQkmVMi8nyJpHJ4wzfHYo6TWuCrO97/AJ3nttRNgxE0tMSCcDR6aU4Qc3FeretarsjfeM1KGBGMaX3tb/zUWMBcv4d4/o2Ag0oApkf/ACpSlLWpSlpIkNnB7/8AklLWpSlLewfpWnELnVkUw19+r79X36vv1JfcRWDDRhrZ0trVfZEw6P4XgttBCQwSlo9ARW69eh73uNNRgxTynyHnr0Pe91tyLhbweQs9m07VPhx6onegEF2V0Pe8+2TABRaAx+gri+VcHu6nfE/DcFtriNzp5HZrgduiOTMd3D48EhtMK8bVNWszT3NzXG79HZSEGhQwnXJ8NHN9RXLtcHu6nfE/DcFtrkNzp5HZrjdujntvRxG/VzG9cHu6JJiSdvB3xPw3Bba5Dc6eR2a43bo57b0cRv1cxvXB7vEgl1ChGsO9fCDJ86BOOwFINJ718T8NwW2uQ3OnkdmuN26Oe29HEb9XMb1we7xDv8WHnf4rPQthmZCrjzpEWKTXxPw3Bba5Dc6eJ3Vxu3RGwR5CejiN+rmN64Pd42r50ArEvandKz7O6lADY4GQQV8T8NwW2pIwZYZpB6gSh3/ivvlffK++UKWRCo21pQMmGBbSvvlffK++VE4gXMia++V98r75Vibqos/uvvlffK++V98qOjgSwS5afGSNZjFcHu8UQEsjrQEEBgqc+qBXxP8Avsp/uhbS0uAibsnbfq4LbS6QKpgcCi/jlLRRBAbb+PI7Ncbt0c9t6OI36QgmhCRp5RZDE3K4Pd1O+J/3q3vK1Ls6eVAFkQKNU306uC21yG508js1xu3Rz23o4jfq5jeuD3dTvif98iuV5XaChIEmubw23LdXBba5Dc6eR2a43boCJDDH7ejiN+rmN64Pd0mzEC5Yr43/AHQphA3t7VKNj5Uthq+SQliw1fAA6Tkw6VCBSLw9lTrbxDjwAh9xJGTbmlxyCihC1da+dTMTVH3eIAE5yXCpip0bPNuG1LZTvfGpeTsg9vABHsg2hPgAoLXvfOgML3vnTYhHeNfEACDuxQe1Kb3evjTYe6MPai2mvc1b0Vg7JudekAAABYw88xuoj7nwaWouTEwqP/cHueKNiyhhI4a3hPfq4LbXIbnTyOzXG7dEWkB6pdHEb9XMb1we7qd8T8NwW2uQ3OnkdmuN26Oe29HEb9XMb1we7qd8T8NwW2pDcokAutCAjI4ejkdmuN26Oe29HEb9MaDXacLEC1K4Pd4gCBKtfxYVIWRGvifhuC20UcEWl5qJeQtwelfT/wCV9P8A5X0/+UiMBCYRmgQkIRCMxX0/+V9P/lfT/wCVmfiIWiFfT/5X0/8AlfT/AOUCvWUISuV9P/lfT/5X0/8AlfT/AOUMWghFkoMUVA7Vwe7xCscRO8t81qHaQZ6qucSzeda+J+G4LbXIbnTyOzXG7dAueXoRf56OI36uY3rg93i/CDZpDNBgWhglqTUL0kiTAelfE/DcFtrkNzp5HZrjduhsrDtrOjiN+rmN64Pd4pw2JBi5cnuUYODEjsD/AGoowrslNfE/DcFtrkNzp5HZrjdujntvRxG/VzG9cHu6nfE/DcFtrkNzp5HZrjdujntvRxG/VzG9cHu6nfE/DcFtqTJ1iW7pWIdDyejjdmrRPDK8Rc6IeJD0Q8ZyPdQAqzkWTaXpVbaAarQDoOJTcrg93U74n4YkiH8tICck0ss70AACwFH1KvqVfUqdMQEcNBytKkh96+pV9Sr6lV/IzRwr6lX1KjFJANnvV+hsEN/evqVfUq+pV9SrN5kj/atBZwQzTGJ5XSOxrPqxivjfhsu9yb1yWuS1yWuS1yWuS1yWuS1yWuS0rBAr2srktclrktclrktclrktclrktclrGMoU+jr6Ovo6+jpE6u1FzsneinalImn5AEFkBn/5f//aAAwDAQACAAMAAAAQ88888088888888888888888888888888888888888888888888888888888888888884wwwwwwwwww484000ww88888888888888oAAAAAAsUosAkIwkAAA88888888888888oAAAAAAAQQAUYwgAgAA88888888888888oAAAAAAAAUIogAAAAEA88888888888888oAAA48848444884IAQI88888888888888oAAA4AAAAEQ0AAUoAAo88888888888888oAAAoAAAAUAUAAUoEYo88888888888888oAAAsAA0AAAIAAYoU4o888888888888888IAAoAAAAUAUAAkoAAo888888888888888IEAkMIkIUEYAEUkAUg88888888888888oAAAoAAAAEAUAAUoAAo88888888888888oAAA4MMIMcMYMMIoAUo88888888888888oAAAoAAAAEAUAAUoEgo88888888888888oAAAoAAAAUAUAAUoAAo88888888888888oAAA8MMoMYMUMMQoAAg88888888888888sMMMc8888888888c8888888888888888888888888888888888888888888888888//8QAFBEBAAAAAAAAAAAAAAAAAAAAkP/aAAgBAwEBPxAc/wD/xAAUEQEAAAAAAAAAAAAAAAAAAACQ/9oACAECAQE 成人学历 /EBz/AP/EACwQAQEAAgECAwkBAQEAAwAAAAERACExQVFhofAQIFBxgbHB0fEwkUBgcOH/2gAIAQEAAT8Qze8ETEqhtgPGVdWNM2GuNrfbvM3vBExKobYDxgoSsNSUEMol8HEQVIKBipLEZ4mVICNEKd9geM1r2av72xsBQFAbNWmGJOQSKImkTdy5SkW2VeNv/HxMUJbukSq3JB4al9lQxN2MmABSrqYMSKwoIk5BQHrXbIuhkg+iOyiDuBRFFCVhqSghlEvg+ypvOnZZpqmy43eN+zrtXQeWUWU/6eypUGnnW1WD0F6nf2VEQVIKBipLEZ4mIf8Ah38h/wBnehdAL81LOx8z5hygcTcjJiI0I6mdNq6r2WmWPPZ9ooSsNSUEMol8HKIs1ZCsCWAv09m1AQVIRRCIIigREQT2RdDJB9EdlEHcCiLkylItsq8af+vg+x3ZGwjo7Ry1b0xWdtEBAa6gROiJnM6smrRNtnG16XDEnIJFETSJu4o1k2ERrU8fXKawxN2MmABSrqZEgI00p13B4XevZEgI00p13B4Xes0iqCoxUcNKlVEBEAQVYKFgoLBZ4PsqVR5KiUYFGIn0x3ZGwjo7Ry1b09is7aICA11AidET2OJuRkxEaEdTKIs1ZCsCWAv0wUJWGpKCGUS+D7alSAjRCnfYHjNa900ccHWXGqoHV1hFOy4VB8K9lVTjZbEMNwQGznCWsTUjk4cRST5vJxxXFeNmgOIoWBFgoYFZDKa68QrRA7MKMMOVNAIVuldm95WlEe1hQUy6ixkL6N0VIFUEnaESEKWuYaVEEnQgMAc63gRWEQStJKQSMSwdC+yiAGg4KsEdYyumIQQ1QVrG9bZbCoCBCqKuVwq4dbcAtToRdjCSeGRA2kbK9kwU3PiWBRKIDoUcZlSTZDaGIu2EKJmd3PushJEIlHNxzJ8EmVXaru5scqV2MYrGKNpdAw8N8bxJTTdsmbOOFrhHhoWlGMmrzqIWBRiJ9MMvY2QuJFCBb08YK5xVQTOIFKk0jItXkAoced1qx1UJXkZQLKokRoO9X2eXzr8KS755OOvyTDpnts6nWTjjL9Rfl0lB 渝粤文库 CTZhvOyJdp2ImtkULEKkRCsuNXYanbzkoQdkQKBgGwnArjTHeRaZZAVADpwCfJ45EHCCnQ2wMXljklBlAFOQWCRPtn4G8LwEgnVc43ubFBolIJJMCsc15qm1AITSCIY3fWEmsURdu79JQa5Fzy+MoC2UK164xaS8elAPgHD3g2lVDc8aSSE8MFHPGZCNsSLuTA1dCIF8rUgIqFGmFbKc7EFtAmiQASyNaLdhDgDpJBBZNnx0YFQADmGxarowmAAUtILGgKHg7KVWzpAABMckooQ1AHtS6UKGnNsCWX9ElKXfuXOY7+JEvfFl6XBLBioTijEaigYbIX3KItSHwUABGEvE+hG9F21m/G6eGnEJALB4Ii/buZqD8Mk65yg7N0nK4XeheXGXRWRATaKvFVevuT6BJtW9TEEDRBuEz2h250XfHkmoWVAjsKXfmA3QvNlyjLEVUASBOyOt5xFiPussBvSEXcuHhhmnRsIAAgSLtkRZchSRxuVc97GAwFbCA3KDuTXWyxxsOISQgvKaN85rjTFpLWofROFSk+4hBtpFZJOAZktakAPQICJbC0SNTCuoZEVEAbbCxS7GZOqwXkKlY1IXppirTbc+u66OlZwJoRgGjDjob55xZdDyym4KEVIuHN6BjhekOyQtHuWVBm8hcCcEIKIJGUHAqGkoMp2Ms6qwzU640t9u0yY2dwdlBgvA6NCwxBBylUF+UkFiEDgy+eM06lSbcMUHHVdn/q1yYk7TiikWoAEgFA0qZyUckDk8Js5yJ0qA3zykTYd4HRGFICFpkdrX4BAs7F9gHSShF3YLs+nvEGUFxeBtQO1TqF0DMoBBCxLS0N1BRgq8Rk4damuykVbnkhz0kqcqSnGlOy4DA501TgURNDsCoVOSRaW7ocKACbwcm+bnJwCLuZgDhoS6aPQBqt3JTbMANFmQYLi9dJRRx1e+7tKhoqm2K62uDpEQyGiLCBoalPCRjjJNSAncaCw2z1VwNQzqAdLh1ZkWRiQcgkAUGjRquSGEkkCUNJsLLYBzfwG6ThOlAjFIjFznhC8YVcEOsBZlVvxIDEEOdbhN84oPW0e2RI6nR23zkhkEttE50f8AXwcmjyVEiVUYg/TEeW8OwiVKGBTUMypx3unINYR5AqgBP93QsBsyupXUcUO4WRD22goXSg0Zvyh5FvYL0B0NtjKTMNKUUI7d4t2AHOkWHDBWdHohEcGCNjFgOkVpHVmDhjPA4FQ11kDA2Ihw3XqJrZEgW6zBJb1IYeQRyud+0ptjbO5tMBWX/wCnCOocLeFE4XGHTJkGKZQRCRedEt2tWoINTVqvQyzLdIKgkhJfrjNH26qFcMW816APrlWP4PlNAxZGujJ8TxORsmkRPliMPbJ8Q00B5tco2oNL3TiOr046lJYb9ZhEwKrO2bLiAKibIXahvXTFOhBBLHwKfl3MZhcQCgdnWQ/L4eoCqAcrj1ciT84ONSUJJEg8N8nSyrihAcj7hcj0+WLWGvnrHDV6SET6OO1TwEU8+BMKGlDqvW4u7wxItlBHXPheBlGBiJScG1XwzU7w0IDs+WPxYqJXewgzDcjkAggppRaDoeOQpeghkJwKb3U7YJiBC8AuTgt4nXGDidE+OgRqcNbc5d6/oQdMeFvhjfD0lEDXXIj8/DHNOBAHSnqiLzHIpjZUgVdUCvf4fbklUo8mSFc0QnFzrfBB3wW50MZKTmAN53nJW01QeVf1V7Y9Tu3IVjttp44mSqbyp3zxUUp3CsAOVXoZsuTgdUOo2vdmFG24o8AvQ8RTnCOpOZHIHKdWgcbwwnx2mKFGWachsBQMcU1z3wk/HoeAnjYLeeMtwysAWL1C10U74OxKBsRRDqD6jFYkNJyEg2DwsxN4aCkA3Gg7scQncmK16FJd80PHPGW0CKP/AB+IOg61BfqkY4dI0HBSUBUt31w5pkGKhRQpsfLConHhv5StNS8YC4VAGhwprTEprHbJhOAEOKA7xpj76ipes+YW4z6YSBWs0LWdDK0jCERRdQB9HPOaTJKngHwVu0owU5sk7cmwhLpXAIutyapSu8FmAs3JUmPFBHtMRgG4/PIoGY3bKLjQPoBhT1y0dxmDVCuhXrgSi8uhIexNeijNQe0l+bBNnYR4yuI53QH7fFXjNK8QPksOTTBJ1QT/AKGbBQQKAqfPKY5ddpOy63h2DEhar3eIj3yrydKCvUHD4tch2+O+G2YCKbWsYdOrDDaZrLFGx4O3CzIAlmhEjOGN7mGEISWgnCgCned8ZFqtyJPqg24+PODwDwRflTFIYXolkE6vk7Y55DeyCtOBq8YfdpNTgq20v1bgXPBLZCrsaHXL/nIqDQysDqw+D1jaMx2jxXGQ9ICPZLnpf7z0v956X+89L/een/vPV/3npf7z0v8Aeel/vJHhq20q3g68OM9L/eel/vPV/wB56f8AvPS/3npf7z0v956X+89P/eas/b4d4OBMkqNKdm/djjjjmVmVbR4mAYlgQvc0yXD8n6CcjyfBi6mSBizXG8UyHAQk0+tz+Mz+Mz+MycFqqDRMnjlM05L4bHvM/jM/jM/jMAcvpWhJdbI6z+MxzOy/RQfnpgIhdbb4gkXvct7TsgkM/jM/jM/jMSWoAA6riahEgixRyHnx8sEFOMnlPdXrXbPKft8HLkWQpF7e8DiXhW79PuMCIR5grxkHsf7QRK3C8V++ahLuicdPw+DywgYAGs9yW9QFYN++X/wSHHkctRfTINYHK3Jyr3c8p7q9a7Z5T9vhpcgO9T7f9vCvoXbnlPcX3+t5612zyn7fDS5Ad6n2/wC3hX0LtzyntQA6kG7o2hFmHAQf/wBU58bhqkiG1hnMS55T9vhpcgO9T7f9vCvoXbnlParSAbQKBQXXVji3ujA0SlYHGsdsMlQ0mdBlzyn7fDC5A5YfR9Pua3YGbpD9BD3B7xfQu3PKe1FyD0uY8Ba/LAMM3fiNk8Q2dnICKqBCQ1wGeU/b4OXTN95pe4POBmgIILSc9+RvPT34z09+M9PfjBzinENgmzwxnz5BIYJo8M9PfjPT34z09+MNiUBaGnXSzPT34z09+M9PfjGfYywQFJtdXrnp78Z6e/Genvxnp78Y5kzriEA2GH3cTRdCueU9qN8MOg7Jh/hwOhnGhKhWqzxVc8p+3/vdLlS7oYL4Fz6tCHgqg+T75dpOoZARmk53yXBNYX9UD6OGCqABVfq+4O9T7f8AXwqtKggD0RwCy1QuZzynur1rtnlP2/8AfLysB2FBGndd9Yq77IqHMVw26vG/9S5Ad6n2/wC3hX0Ltzynur1rtnlP2/8AeOMhKgTgMCaXUcJGH+ypPoD8T/UuQHep9vuPYqJNPY7/AOSvoXbnlPdQJRtDYwOrDPLPt/7jsvpRX1D/AMTG3hjbvzwcb1A3ia3X5oO0q1YcrvPQ35x7PAz/ADHSYnOfiZ3Onxwe9P8AoVDrnob842DgKtmrq75cmZyB0E2zl7uEJLbIVuueEimoTe3Mz0N+c9DfnAM8BMj0jyeGBZHmMnXTOx0wMiKMFwnhxi5Aca+DWehvznAxrbSnnoqZ6G/OQAE4gt3x4gofX1l8eajKI7OaHL3c9DfnPQ35wypBOdfFrAI7VpCk8ORSDT35DRlgFWcQ6OQeGIIVYDgXqvjnob856G/Oehvznob84UhAPIYBws9tCU7mmS43kg+e4eT/ANyojYLgTSE3R6845cqUGsCcaPg7k4/1LkB3qfb7iW6SkYCvfb/kr6F255T3V612zyn7fDS5Ad6n2/7eFfQu3PKe6vWu2eU/b4OXv3yUZBX0cMMIQaJ390d6n2/6+FSCXHL4AHVXUxBkIpGx1zyntXb1qY/Pyzr9jwXvOZ9MI+ffUnl8s8p+3wcurCCXw1N/M3hXdzdhDye5GjRhj3pSOxNw3MZ8ulgJo1Tc9yNGjGV1BCQaM3x7kaNGsfzyHATcevX3Y0aNGRdK3WUZNnhgj3CiCOmeU9qXQYpOJe9PDTzccE/U8OHzmBXMsDYWDQK8GeU/b4aXIDvU+33CqCpCUjtN9XP+SvoXbnlPaqy+MagDvxDFdYeMYBbA3QeuH6buOEZ1kGeU/b4aXIDvU+33Bmeu6KzPmt/yV9C7c8p7V1aRvAJ9EEvjkurKgH0N/wCjxzZESR0KJyRM8p+3w0uQHep9v+3hX0Ltzynur1rtnlP2+GlyA71Pt/28K+hdueU91etds8p+3wcuxmD8BGCTU6uPqrikoU8n3N82FFt9kgMOFPpfcZxmg7AFfqe0S4S2pQDTVjhlz266DPP3QbNmi6Beh442zGohS7DPKe6vWu2eU/b4N4i4MzPwDwCkPVzg4XAIA4Oc9A/nPQP5z0D+cGTNDUI7utOTxEQe5GLnoH856B/OegfzgnojUNE0LOHTPQP5z0D+csiGAasZt1/7hwJIprnb4M9A/nPQP5z0D+c9A/nD/wAmvdNE 国家开放大学 ShpjGFb98N2vbGIEmw5U7mU7mU7mU7mR5g5lyVwWdc0+U+2U7/BWCYO0QTcexn9b9s/rftn9b9s/rftn9b9s/rftn9b9s/rftn9b9s/rfth4imYKzN91c/rftn9b9s/rftn9b9s/rftn9b9s/rftn9b9s/rftn9b9sAZQVQAm69lz+w/ef2H7z+w/ef2H7wRsxK/6dnxxl6wVaVBTmGr4ZG05mrv8QZ4oiCwhXrDX/y//9k=" alt="文档图片" style="max-width:100%;height:auto;">